Preparation and evaluation of cyclosporin A-containing proliposomes: a comparison of the supercritical antisolvent process with the conventional film method
نویسندگان
چکیده
OBJECTIVES The objectives of this study were to prepare cyclosporin A (CsA)-containing proliposomes using the supercritical antisolvent (SAS) process and the conventional thin film method for the comparative study of proliposomal formulations and to evaluate the physicochemical properties of these proliposomes. METHODS CsA-containing proliposomes were prepared by the SAS process and the conventional film method, composed of natural and synthetic phospholipids. We investigated particle size, polydispersity index, and zeta potential of CsA-containing proliposomes. In addition, both production yield and entrapment efficiency of CsA in different proliposomes were analyzed. Physicochemical properties of CsA-containing proliposomes were also evaluated, using differential scanning calorimetry and X-ray diffraction. The morphology and size of CsA-containing proliposomes were confirmed, using scanning electron microscopy. We checked the in vitro release of CsA from CsA-containing proliposomes prepared by different preparation methods, comparing them with Restasis(®) as a positive control and the stability of SAS-mediated proliposomes was also studied. RESULTS CsA-containing proliposomes formed by the SAS process had a relatively smaller particle size, with a narrow size distribution and spherical particles compared with those of conventionally prepared proliposomes. The yield and entrapment efficiency of CsA in all proliposomes varied from 85% to 92% and from 86% to 89%, respectively. Differential scanning calorimetry and X-ray diffraction studies revealed that the anhydrous lactose powder used in this formulation retained its crystalline form and that CsA was present in an amorphous form. Proliposome powders were rapidly converted to liposomes on contact with water. The in vitro release study of proliposomal formulations demonstrated a similar pattern to Restasis(®). The SAS-mediated CsA-containing proliposomes were stable on storage, with no significant changes in particle size, polydispersity index, and entrapment efficiency. CONCLUSION These results show promising features of CsA-containing proliposomal formulations, using the SAS process for the large-scale industrial application.
منابع مشابه
Preparation of basil seed mucilage aerogels loaded with paclitaxel nanoparticles by the combination of phase inversion technique and gas antisolvent process
Objective(S): In this work, paclitaxel (PX), a promising anticancer drug, was loaded in the basil seed mucilage (BSM) aerogels by implementation of supercritical carbon dioxide (SC-CO2) technology. Then, the effects of operating conditions were studied on the PX mean particle size (MPS), particle size distribution (PSD) and drug loading efficiency (DLE). <stron...
متن کاملComparison of two methods of carbon nanotube synthesis: CVD and supercritical process (A review)
A carbon nanotube (CNT) is a miniature cylindrical carbon structure that has hexagonalgraphite molecules attached at the edges. Nanotubes look like a powder or black soot, but they'reactually rolled-up sheets of graphene that form hollow strands with walls that are only one atom thick.Carbon nanotube has been one of the most actively explored materials in recent year(s) due to...
متن کاملSupercritical Fluid Technologies to Fabricate Proliposomes.
Proliposomes are stable drug carrier systems designed to form liposomes upon addition of an aqueous phase. In this review, current trends in the use of supercritical fluid (SCF) technologies to prepare proliposomes are discussed. SCF methods are used in pharmaceutical research and industry to address limitations associated with conventional methods of pro/liposome fabrication. The SCF solvent m...
متن کاملEffects of deep eutectic solvents in preparation of nanoparticles TiO2
Deep eutectic solvents (DESs) have always been attractive to scientists due to their wide range of applications, a great interest in diverse fields including nanotechnology due to their unique properties as new green solvents. It used large-scale for chemical and electrochemical synthesis nanomaterial. DESs have had also active role in improving the size and morphology of nanomaterial during sy...
متن کاملPreparation of PMMA/MWNTs Nanocomposite Microcellular Foams by In-situ Generation of Supercritical Carbon Dioxide
Nanocomposites containing poly(methyl methacrylate) (PMMA) and surface functionalized Multi-Walled Carbon Nanotubes (MWNTs) were synthesized. The dispersion of MWNTs in PMMA was characterized using Transmission Electron Microscopy (TEM).The synthesized nanocomposites were successfully foamed using a simple method based on the in-situ generation of supercritical carbon dioxide (CO2</sub...
متن کامل